

Protect the .NET application

Introduction

Virbox Protector support to protect/encrypt the .NET application and .NET Core 3.0 above
applications, protect/encrypt the .dll and executive file directly.

Virbox Protector support to protect .NET application both in GUI tool and CLI tool.

Here we use Virbox Protector GUI tool to show the protection process for .NET application step
by step. for how to use CLI tool to protect .NET application, pls refer the User Manual or contact
us.

Prerequisites

Sign-up Virbox Protector and install the Virbox Protector;

Open Virbox Protector and sign in with your account;

Above pre-requisition is for test/evaluation Virbox Protector only.

To protect formal and commercial release software, pls purchase and get the related Virbox
Protector license.

Protect your .NET application in 5 steps

af://n116
af://n3
af://n7
af://n14

1. Import .NET file: drag the .NET file which need to be protected to Virbox Protector;
2. Set the configuration of "Function Option"; (Protect specified function)
3. Set the configuration of "Protection Option"; (Protect the .NET apps in general)
4. Click to Start the "Protection" Process
5. Backup the source file. rename the protected file to source file name and save the

"configuration" file

Protection Process

1. Import .NET file: Drag .NET file into Virbox Protector

Drag the .NET file into the Virbox Protector, in the sample case, the .NET file we used is
DotNetGame.exe;

Then Virbox protector will parse the .NET exe sample automatically. and show .NET file
information in the "Basic info" tabs:

af://n27
af://n28

2. Set the configuration of "Function Option"; (Protect
specified functions of the .NET file)

Developer may design your protection scheme via setting of Function Option and protection
Option tabs.

For those critical functions of .NET files which need to be protected, Developer may select and
define protection mode to each function via "Function Option" tabs:

2.1 Go to "Function option" and click "Add Functions", click the exe file shown in the box, Virbox
Protector will show and list more functions:

af://n34

2.2 Select the functions which you want to protect: Virbox Protector provides 3 kinds of
protection mode for developer selection: No Protected, Obfuscation, Encryption; and the security
to each protection mode comparison from high to low is: Code encryption>Obfuscation;

 Click "OK" when finalized the setting.

1. Ctrl+A to select all of functions, and right click, to select the protection mode, then you can
quickly select the all functions with same protection mode respectively;

2. Considering the program execution performance may be impacted, so we don't suggest to
protect all of .NET functions, instead of to select those critical and important functions to
protect only.

3. For some functions may not support the protection mode set to "Encryption", pls change the
protection option from "Encryption" to "No Protect" or "Obfuscation" mode, if prompt
message pop-up;

4. "Analysis", since protection may impact the .NET application execution performance, Virbox
Protector provides "Analysis" Function (The button on the top right corner of Main Menu,) to
developer to verify when the protection mode to each function has been selected. then
developer can evaluate/simulate the program execution performance before the protection
finalized. if execution performance is not satisfied, developer can change protect option to
some function which frequently called. "No Protect" to improve the performance.

3. Set the configuration of "Protection Option"; (Protect the
.NET project in general)

Go to "Protection Option" tabs, Set and Protect the .NET file in General:

af://n52

Besides to protect the specifies critical functions, Virbox Protector supports to protect .NET
application in fundamental, with multiple technology: Compression, Name of Obfuscation, JIT
encryption, and also provides with Plug in unit: DS Protector to protect .NET data resource.

Developer may set and define following factors in the "Protection Option" tabs

3.1 Output Info: Set output path and protected .NET filename, as shown in the "box 1" marked
with blue frame

3.2 Protection Option Setting: Protect the .NET file in fundamental, In General, include
"Compression", "JIT Encryption" and "Name of Obfuscation", only need to click, and JIT encryption
and Name of Obfuscation selected by Virbox Protector on default.

3.3 Plug-in Unit Setting: If Developer has data resource need to be protected, switch on "ds"
button to open "DS Protector" to protect relevant data resource via "DS Protector" and set the
password to protected data resource.

Remove the "Strong Name" to your .NET project before Protection and add "Strong Name" after
protection completed.

1. .Net JIT encryption means it encrypt all of the IL instructions of method in the .Net Program,
and the instructions will be decrypted only when the JIT compiling proceed in the .Net
Virtual Machine, This can be used to prevent static decompiling and prevent the IL code
being Dumped in memory.

2. Name of Obfuscation: Rename the .Net program method name and class name with
random string, the name that exported for external call will not be changed.

4. Click to Start the "Protection" Process

 Click "Protect selected Project" to start protection;

af://n70

Then go to the output folder, you will find 2 news file has been generated, in the sample, we have
set the output path: D:/VBP protection sample/Dotnet/DotNetGame.ssp.exe

The new file which name DotNetGame.ssp.exe, is the protected .net application;

The new file which name DotNetGame.exe.ssp, is the configuration file which stored the
protection option setting.

5. Backup the source file, rename the protected file to
source file name and save the "configuration" file

Next, you need to rename the original .NET file, the un-protected file to new name and keep it,
don't publish this original file. and rename the "DotNetGame.ssp.exe", the protected .NET file to
"DotNetGame.exe. then you can distribute this protected file to your enduser or further testing
before released.

Please Don't distribute the configuration file: DotNetGame.exe.ssp, to your enduser. please keep
it, if you use CLI mode to protect your .NET application, it is useful configuration file when you
use Virbox Protector CLI mode later.

Appendix: Using label to mark the critical functions
in .NET project

Virbox Protector support to protect the critical functions with 2 protection modes:

af://n78
af://n82

Code Encryption and Code Obfuscation

Developer may set a label to mark the protection mode to the function will be protected in code
building process, and it can be quoted and viewed in the code, so, when the compiling
completed, developer drag the apps into the Virbox Protector, the GUI will show the protection
mode set in the code accordingly, here is label sample for code:

 //Label

namespace Virbox{

 //Code Obfuscation

 class Mutate : System.Attribute

 {

 }

 //Code Encryption

 class Encrypt: System.Attribute

 {

 }

}

public class main

{

 [Virbox.Mutate]//Code Obfuscation

 public static void test1(string[] args)

 {

 System.Console.WriteLine("hello Virbox.Mutate!");

 }

 [Virbox.Encrypt]//Code Encryption

 public static void test2(string[] args)

 {

 System.Console.WriteLine("hello Virbox.Encrypt!");

 }

 public static void Main(string[] args)

 {

 test1(args);

 test2(args);

 }

}

	Protect the .NET application
	Introduction
	Prerequisites
	Protect your .NET application in 5 steps
	Protection Process
	1. Import .NET file: Drag .NET file into Virbox Protector
	2. Set the configuration of "Function Option"; (Protect specified functions of the .NET file)
	3. Set the configuration of "Protection Option"; (Protect the .NET project in general)
	4. Click to Start the "Protection" Process
	5. Backup the source file, rename the protected file to source file name and save the "configuration" file

	Appendix: Using label to mark the critical functions in .NET project

